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Monte Carlo simulation has been performed in the planarP2 andP4 models to investigate the effects of the
suppression of topological defects on the phase transition exhibited by these models. Suppression of the 1/2
defects on the square plaquettes in theP2 model leads to complete elimination of the phase transition observed
in this model. However, in theP4 model, on suppressing the single 1/2 defects on square plaquettes, the
otherwise first order phase transition changes to a second order one which occurs at a higher temperature, and
this is due to the presence of a large number of 1/2 pair defects which are left within the square plaquettes.
When we suppressed these charges too, complete elimination of the phase transition was observed.
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I. INTRODUCTION

It is well known that conventional long range order can-
not exist in a two-dimensional continuous spin system[1].
However, the existence of topological charges leads to a
quasi long range order(QLRO) to disorder phase transition.
The most notable and thoroughly investigated example is the
two-dimensionalXY model [Os2d model] in which, using a
renormalization group technique, Kosterlitz and Thouless[2]
predicted a QLRO-disorder phase transition which is associ-
ated with the unbinding of the vortex-antivortex pairs(topo-
logical charges of strength ±1) which are stable topological
defects in this system. The phase with QLRO is character-
ized by an algebraic decay of the spin-spin correlation func-
tion which is a slower decay than the fast exponential one
which is observed in a completely disordered system. On the
other hand, in the two-dimensional nonlinear sigma model,
an example of which is the planarOs3d model, there exists
no stable topological defect and the system remains disor-
dered at all finite temperature[3].

Another class of the two-dimensional systems of interest
is the planar Lebwohl-Lasher(LL ) [4] model and a modified
version of it to be elaborated below. In the three-dimensional
version of the LL model, the spins(of dimensionality 3),
located at the sites of a simple cubic lattice, interact with
nearest neighbors via a potential −P2scosud whereu is the
angle between the spins andP2 is the second Legendre poly-
nomial. This model successfully describes the orientational
aspects of a nematic and undergoes a weakly first order
phase transition, representative of the nematic-isotropic(NI)
transition, seen in a real nematic. A number of investigators
[5,6] have used a modified version of the LL model by add-
ing a −P4 term to the usual −P2 one, P4 being the fourth
order Legendre polynomial. The introduction of theP4 term
reduces the sharpness of the peak of theP2 term in the po-
tential atu=p /2 and may lead to the appearance of a local
minimum, depending on the relative strengths of theP2 and
P4 terms in the potential. This is found to enhance the first
order degree of the NI transition.

The two-dimensional version of the LL model and a
modified version of it with a pureP4 interaction between
nearest neighbor spins have recently been investigated using

Monte Carlo(MC) methods by a number of authors[7–9]. In
the rest of this paper we shall refer to these as the planarP2
andP4 models, respectively. Both models possess in addition
to the usualOs3d symmetry, aZ2 symmetry as well and this
leads to the identification of the antipodal points in the order
parameter spaceS2. The planarP2 model is known to exhibit
a continuous phase transition at a dimensionless temperature
whose thermodynamic limit is 0.547[8] and theP4 model is
characterized by a strongly first order transition at tempera-
ture 0.376[9]. In the low temperature ordered phase in both
models the pair correlation function shows an algebraic de-
cay to a plateau which changes over to an exponential decay
in the neighborhood of the phase transition[8,9].

The role of defects in the phase transition of various
three-dimensional spin systems is very difficult to study
theoretically due to the nonlinearity introduced in the three-
dimensional(3D) nature of the spins. However, a simulation
technique may be used to investigate the role of topological
defects in these systems. Lau and Dasgupta[10] have shown
numerically using the conventionalMETROPOLIS algorithm
that monopoles(hedgehogs) are necessary for the phase tran-
sition in the three-dimensional Heisenberg model. These au-
thors observed that if one suppresses the formation of these
defects in the 3D Heisenberg model, the system remains or-
dered at all temperatures and the transition to the disordered
phase disappears altogether. The present work, which in-
volves an elaborate MC study, was undertaken to investigate
the effect of the suppression of the topological defects on the
phase transitions which the planarP2 andP4 models exhibit.
The work was motivated to a large extent by the work of Lau
and Dasgupta[10] in the 3D Heisenberg model. Other work,
along the same line, which must be mentioned in this con-
text, is that of Lammertet al. [11] who, in a MC study, have
shown that the nature of the nematic-isotropic transition in a
3D nematic changes when one suppresses the formation of
the stable line defects, called the disclination lines. Our work
shows that the topological defects play a very crucial role in
the phase transition in the planarP2 and P4 models and al-
though these models possess the same symmetry they have
remarkably different critical behavior.

In the next section we briefly discuss the nature of the
topological defects in the planarP2 and P4 models and the
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algorithms for their identification are presented in the follow-
ing one. The details of our MC simulation are then presented
followed by the results and discussion.

II. Topological defects in the planar models

In the two-dimensional Heisenberg model there exist no
stable topological defects. So the first or fundamental homo-
topy group is just the set containing the identity. However, in
the present planar models(P2 and P4) due to the localZ2
symmetry in addition to theOs3d symmetry there arise stable
topological point defects known as 1/2 disclination points,
where the director rotates through an angle of 180° around
the defect core. The order parameter space is just the unit
sphereS2 with antipodal points identified. Any mapping of
the other half integral point defects on the order parameter
space is homotopically equivalent to the mapping of the 1/2
defect. Point defects of integral strength are not stable in
these models because of the so called escape to the third
dimension. Any attempt to escape from a configuration con-
taining a 1/2 point defect leads to a more singular semi-
infinite line defect extending from the defect core. So the
fundamental or first homotopy group of the concerned mod-
els is just the two-element groupZ2 [12],

p1 = h0,1j.

It is known that topological instability does not necessar-
ily imply physical instability[12]. If the path connecting the
singular to nonsingular configurations of the free energy in-
volves a configuration of higher free energy than either, then
one may say that the topologically unstable singularity may
possess a considerable degree of physical metastability. This
seems to happen in theP4 model and may be briefly ex-
plained as follows. Consider a configuration where each of
the four spins at the lattice sites which form a unit square are
in a plane and oriented at right angle to their neighbors. The
−P4scosud potential, in addition to having the global mini-
mum at u=0 (or u=p), also has a local minimum atu
=p /2. If the orientation of the spins are now gradually
changed in order to makeu→0 (so as to reach the ground
state) a potential barrier will have to be overcome and the
process becomes energetically costly. Thus there may exist
metastable integral point defects in this model[13].

The algorithm for the detection of these defects is, how-
ever, nontrivial as it is not really possible to enclose a 1
defect by four spins alone. The possible method of detection
of these defects is discussed in the next section. We add that
we were unable to detect any such defect because of the low
probability of their formation.

III. The Defect finding algorithms

In order to detect the 1/2 point defects we have followed
the algorithm originally proposed by Vachaspati[14] and
subsequently used by others[15]. In order to trace out the
topological defects it will be useful to see when a closed loop
in the physical space will enclose a 1/2 disclination point.
Let us consider a triangular plaquetteABC in the physical
space. Due to local inversion symmetry we have to assign

antipodal pair points on the unit spheresS2d for each site of
the triangular plaquette. Let points corresponding toA, B,
and C be sN,Sd , sP,P1d, and sR,R1d (Fig. 1). Let us start
from the north poleN. The pointP or P1 is selected depend-
ing on which is closer toN. Let P be the selected point. So
the arcNP of the great circle on the order parameter space is
traversed when we go from siteA to B on the physical space.
Select fromR or R1 whichever is closer toP. If the selected
point is closer toS then the mapping ofABC is a noncon-
tractible loop and the plaquette will enclose a 1/2 disclina-
tion point defect. However, if the selected point forC is
closer toN, then the mapping is contractible to a point on the
sphere and no defect will be enclosed by the triangular
plaquette. It may be noted that ifSi , Sj, andSk are the spin
variables associated with the pointsA, B, and C then the
triangular plaquette will enclose a 1/2 defect if

sgnfsSi,SjdsSj,SkdsSk,Sidg = − 1. s1d

Priezev and Pelcovits[6] in their work on three-
dimensional nematics have defined defect counting operators
based on this principle. In addition to these two mathemati-
cally equivalent methods, an algorithm for detecting 1/2 de-
fects inRP2 models can be developed using the method first
proposed by Berg and Luscher[16]. The method works as
follows. The projection matrixP associated with each unit
spin vectorS in an RP2 model obeys the relationP2=P and
TrP=1 and its elements may be defined asPab=SaSb where
a ,b=1,2,3. The charge at a lattice sitex* enclosed by an
elementary triangular plaquette which has the projection ma-
tricesP1, P2, andP3 associated with its corners is given by

qx* =
1

2p
cos−1 TrhP3P2P1j

hTrP1P2TrP2P3TrP3P1j1/2. s2d

We have used and checked that all the three above men-
tioned algorithms for the detection of the 1/2 defects in tri-
angular plaquettes are exactly equivalent in all cases in both
models.

The detection of the metastable 1 defects in theP4 model
is a nontrivial job and the probability of their formation is

FIG. 1. The triangular plaquetteABC in physical space(left)
and the order parameter space(right). On S2 sN,Sd is assigned for
A, sP,P1d for B, and sR,R1d for C. The great circlexy is perpen-
dicular to NS and x1y1 is perpendicular toPP1. If the point R is
outside the region enclosed by two great circles then the corre-
sponding loop is contractible, otherwiseABC will enclose a 1/2
disclination point(see Ref.[14]).
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very low as this requires a very “special arrangement of the
order parameter over many uncorrelated domains”[17]. In
3D nematics, where in principle both line and point defects
(hedgehogs) may form, no point defects are observed in ex-
periments on quenched nematics[18] until the defect net-
work has coarsened appreciably. It has been observed that
monopoles were formed only by string interactions and none
were generated during the quench. Using the topology, on
more specifically the homology, of the order parameter space
[17], Hindmarsh has explained why the expected density of
point defects is extremely low. The observation, briefly
speaking, is that in order to coverRP2 space twice(which is
necessary for a topological 1 charge) a roughly spherical
arrangement of a minimum of 12 uncorrelated adjacent do-
mains is necessary and this has a probability,10−8. In a
two-dimensional nematic the same considerations are be-
lieved to apply for the +1 point defects[19]. We have used
the algorithm using the 12-spin configuration proposed by
Zapotackyet al. [15] to detect the 1 charge but could find
none.

IV. The Simulation Details

In the present paper we have used the conventional
METROPOLIS spin update algorithm[20,21] with periodic
boundary conditions in order to study the role of the topo-
logical defects in the phase transitions exhibited by the pla-
nar P2 andP4 models. Lattice sizes ranging from 20320 to
80380 were used and a part of the work was performed
using the histogram reweighting technique of Ferrenberg and
Swendsen[22].

In order to carry out the procedure of the suppression of
the defects in the planar lattice models we have included a
chemical potential term associated with the topological
charges[10]. The Hamiltonian used in the simulation is
given by

H = − o
i j

PLscosui jd + lo
i jkl

Qijkl s3d

whereL is either 2 or 4.ui j is the angle between the nearest
neighbor spinsi , j and Qijkl is the sum of charges of two
triangular portions of a square plaquette. A positivel makes
the formation of the charges expensive in terms of energy
and for almost total suppression of the charge a large value
of l (about 10 to 60, but independent of temperature) was
normally chosen. In order to obtain an unrestricted simula-
tion we setl=0. The charge enclosed byi jk for instance is
given by

Qijk = 1
4f1 − sgnhsSi,SjdsSj,SkdsSk,Sidjg. s4d

Clearly the sumQijkl can be 0, 1/2, or 1. IfQijkl is 0 then the
square plaquette encloses no charge. If it is 1/2 then a 1/2
disclination point is enclosed. But if it is 1, then it should not
be confused with an integral point defect. In fact this corre-
sponds to two closest possible 1/2 charges situated within
a square plaquette of linear dimension equal to the lattice
spacing.

In both the planar models we have investigated, the small-
est part of the system in real space that can enclose a 1/2

point defect is a triangle. Each elementary square plaquette
can be diagonally cut into two triangles and if these two
adjacent triangles each enclose a 1/2 defect then this leads to
a 1/2 pair charge being enclosed by the elementary square. If
only one of those triangles encloses a 1/2 charge then the
square in turn encloses a single 1/2 charge. We denote the
number of square plaquettes enclosing a pair of 1/2 charges
by n1 (this should, however, not be confused with a topologi-
cal defect of charge 1). Similarly, the number of elementary
squares enclosing a single 1/2 charge is denoted byn1/2. In a
recent work, Mondal and Roy[13] have observed that the
ratio n1/2/n1 behaves like a response function in both the
models although its behavior is different in the two systems.
When plotted against temperature, the ration1/2/n1 exhibits a
maximum at the transition in theP2 model while in theP4
model it shows a sharp fall at the transition. Finite size ef-
fects are also prominent in the transition temperatures thus
obtained from then1/2/n1 vs T plots.

In our MC simulation, while investigating the effect of
suppression for the charges in the two planar models, we
have treated the single 1/2 charge and the 1/2 pairs(within
an elementary square plaquette) on different footings. For the
simulation where no charge suppression has been attempted
we have setl=0. For the suppression of the charges repre-
sented byn1/2, lÞ0 only for Qijkl =1/2 while for total (both
single-1/2 and 1/2-pair suppression), lÞ0 for Qijkl Þ0. In
the P2 model, complete suppression of single 1/2 defects
was found to lead to complete suppression of the 1/2 pair
defects and this leads to complete elimination of the phase
transition in this model. In theP4 model, however, the sup-
pression of the single 1/2 defects leaves a large number of
1/2 pair defects within the elementary squares and evidence
of an additional phase transition at a higher temperature is
obtained. When these defects too are suppressed, the phase
transition totally disappears.

In order to estimate the critical exponents and the thermo-
dynamic limit of the critical temperature of the transition that
we obtained in theP4 model and which seems to be of sec-
ond order, we have applied the finite size scaling method.
The finite size scaling method is a technique of estimating
the critical exponents and the thermodynamic limit of the
transition temperature by observing how the measured quan-
tities vary with the system size. In the finite size scaling
method(the data collapse method in particular) we extract
the part of the thermodynamic function which does not con-
tain the system size explicitly[21]. This part is called the
scaling function. If proper values of the critical exponents
and the thermodynamic limit for the transition temperature
are chosen then the scaling function for different system
sizes collapses. In this paper we have used the data collapse
technique for estimating the critical exponents associated
with the specific heat and the order parameter. The critical
exponents associated with the correlation length, specific
heat, and order parameter are denoted byn , a, and b,
respectively.

For the specific heat, the scaling relation stands as

CV = La/nC̃sL1/ntd s5d

wheret is the reduced temperature andC̃ is the specific heat
scaling function.
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Similarly for the order parameterkq2l [see Eq.(7)], the
scaling relation is given by

kq2l = L−4b/nQ̃sL1/ntd s6d

where Q̃ is known as the order parameter scaling func-
tion [11].

V. RESULTS AND DISCUSSION

We have evaluated various thermodynamic properties like
the internal energy per particlekEl, specific heat, order pa-
rameter, etc. The specific heat was evaluated by taking the
temperature derivative ofkEl as well as from fluctuation of
the energy. Due to the local inversion symmetry, the order
parameter is a second rank tensor.

As a measure of the order prevailing in the system we
used the quantitykq2l given in Ref.[11]:

kq2l =
N

N − 1
K3

2
TrQ2 −

1

N
L s7d

whereQab=s1/NdoQsidab is the nematic tensor order param-
eter,Qsidab= snanb− 1

3dabd (n̂ is the molecular axis of theith
molecule), andN is the total number of sitessid in the lattice.
This definition ensures thatkq2l is zero in a fully disordered
system and 1 for a fully ordered system.

In the case of theP2 model we have simulated for linear
dimensionL=40 and 60. In Fig. 2 we have depicted the
specific heat versus temperature plot for theP2 lattice model
of size 40340. The unrestricted simulation shows a peak
that disappears when the single 1/2 charges on the square
plaquettes are suppressed. We have observed that the after
suppression of the single 1/2 charges on the square
plaquettes there remains no 1/2 pair defect in any square
plaquette. The temperature dependence of the order param-
eter used in this model for the two cases is shown in Fig 3.

While the temperature derivative ofkq2l has a peak at the
transition temperature in the normal case(where no defect is
suppressed), which presumably is a signal of a phase transi-
tion in a finite system[23], in the defect-free case it seems to
lose the characteristic shape and shows a smooth and rather
slow decrease with temperature and vanishes at around a
temperatureT=6. We would be inclined to conclude from
the results onCV andkq2l that the defect-free phase exhibits
no phase transition at all.

Turning to the P4 model, which has a characteristic
strongly first order phase transition[9], we first point out that
the suppression of the single 1/2 defects on the square
plaquettes here does not result in suppression of the 1/2 pair
defects on the square plaquettes. This observation is different
from what happens in theP2 system where the suppression
of the single 1/2 defects on the square plaquettes leads to
suppression of the 1/2 pair defects. On suppressing the
single 1/2 defects a different phase transition is observed.
We point out, however, that it is impossible to make the
system completely free of topological defects, even when
arbitrarily large values ofl are used. However, the residual
charges left were of very insignificant amount. For instance,
at T=0.55, the traces of the single 1/2 and 1/2 pair charges
that could not be suppressed were about 0.02% of these
charges present in the system at the same temperature after
single 1/2 charge suppression. Figure 4 shows the tempera-
ture dependence of the specific heat for the normal lattice
sL=40d and after suppression of the single 1/2 defects(for
L=40 and 60). The peak inCV for the latter case, while is
greatly reduced in size(from 80 to about 17), shifts to a
higher temperature which for both lattices is close to 0.494.
Presumably the phase transition that we observed after sup-
pressing the single 1/2 defects is due to the presence of the
1/2 pair defects. When we suppressed the 1/2 pair defects
too in all triangular plaquettes of the lattice no evidence of
any peak inCV was observed, although a humplike feature
was seen withCV,3.5 over a temperature range extending
from 0.53 to 0.62. In the case of theP4 model we have also
investigated the response of the defect density to the phase
transition. When no kind of charge suppression was applied a
large number of single 1/2 defects as well as 1/2 pair de-

FIG. 2. The specific heat vs temperature plot in theP2 model. +
corresponds toCV obtained from energy fluctuation in theL=40
lattice and the continuous curve is taken from Ref.[8] where it has
been obtained using multiple histogram reweighting and the peak is
at T=0.587. Both correspond to normal MC simulation with no
charge suppression. The3 representsCV for L=40 lattice after
suppressing the single 1/2 defects on the square plaquettes.

FIG. 3. The order parameterkq2l obtained for theL=40 lattice
in the P2 model with no charge suppression. The temperature de-
rivative has a peak atT=0.567. The inset shows thekq2l vs T plot
after suppressing the single 1/2 defects on the square plaquettes.
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fects were found to be present. In Fig. 5 the temperature
dependence of the density of single 1/2 defects is shown for
unrestricted simulation. In Fig. 6 the temperature dependence
of the density 1/2 pair defects is shown both before and after
suppression of the single 1/2 defects. Clearly the tempera-
ture derivative of the defect density behaves like other re-
sponse functions for all cases.

In Fig. 7, we have depicted the temperature dependence
of the order parameterkq2l for all three cases in theP4 model
for L=40. The peaks of the temperature derivative ofkq2l
occur, respectively, at 0.379(normal MC simulation) and
0.490(after suppressing single 1/2 defects) and their heights
are 119.5 and 18.5, respectively. On suppressing all the 1/2
charges on all triangular plaquettes of the lattice(total charge
suppression), dkq2l /dT no longer exhibits a peak andkq2l
seems to have an asymptotic value of 0.1 atT=2, up to
which the investigation has been made. We add that
dkq2l /dT after total charge suppression has a feature similar
to that seen inCV in that a broad peak of height,4 was seen
over a temperature range from 0.52 to 0.6. The existence of
this broad hump of insignificant magnitude over an extended

temperature range cannot be a sign of a phase transition.
These, in some way, may be connected to the existence of
the small number of residual charges left in the system after
the attempt to suppress them completely failed.

We now turn to the pair correlation functiongsrd
=kcos2ui j −1/3l where r is the separation between the two
spinsi and j which make an angleui j with each other. This
function for theP2 model atT=0.6, for instance, which is a
temperature much higher than the normal critical tempera-
ture in this model, decays exponentially to zero, as it should,
in the complete absence of long range order, and a best fit
with gsrd=a exps−lrd yieldsa=0.439 andl=0.248. For the
single 1/2 charge(and consequently 1/2 pair charges) sup-
pressed case, it decays algebraically and a best fit likegsrd
=ar−p+b yields the parametersa=0.404,b=0.022, andp
=0.372(Fig. 8). In Fig. 9, thegsrd vs r plots for theP4 model
are shown forT=0.48(which is greater than the normal tran-
sition temperature but less than the transition temperature
obtained after 1/2-charge suppression), T=0.5 (which is

FIG. 4. CV plotted againstT for unrestricted simulation ofL
=40, P4 lattice (left) and the same forL=40 and 60 lattices ob-
tained after suppressing the single 1/2 defects on the square
plaquettes(right). The slightly bigger peak is for theL=60 lattice.
The peak occurs atT=0.494.

FIG. 5. The density of the single 1/2 defects enclosed by the
square plaquettes in the case of theL=40 P4 model with no charge
suppression.

FIG. 6. The densitykn1l of 1/2 pair charges for the unrestricted
case of theL=40 P4 model(left) and the same after suppressing the
single 1/2 defects(right). The temperature derivative of the former
has a peak atT=0.379 and the latter(inset) peaks atT=0.494.

FIG. 7. The temperature dependence ofkq2l for the L=40 P4

model. On the left is the unrestricted MC result and on the right is
the case when the single 1/2 charges on the square plaquette were
suppressed. The inset showskq2l when all charges are suppressed.
The temperature derivatives of the first two curves have peaks at
0.379 and 0.490, respectively.
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slightly higher than the observed transition temperature after
1/2-charge suppression), and T=0.68. At all of these tem-
peratures, as one would expect, the correlation function in
the normal case decays exponentially to zero. The two other
cases give best fits for an algebraic decay to a plateau, and
the parameters are listed in Table I. We find that in theP4
model the result of single-1/2-charge suppression is the
same as that in theP2 model, while with the suppression of
the 1/2 pair charges too, the asymptotic value of the order
prevailing in the system increases further. The phase transi-
tion that theP4 system has after suppressing the single 1/2
charges is second order. We have evidence that it is not first
order as the dual peak structure of the probability distribution
as a function of energy, which is so distinct in theP4 model
[9], has been found to disappear totally after suppressing the
single 1/2 charges on the square plaquettes. In Fig. 10 we
have given the the free energy of 40340 and 60360 lattice
in the P4 model after suppressing the single 1/2 defects on
the square plaquettes. The single well structure of the free
energy indicates the second order quality of the phase tran-
sition after suppressing the single 1/2 defects.

We have also used standard finite size scaling method
available for the second order phase transition[21] in order
to estimate the critical exponents and the thermodynamic
limit of the transition temperature of the phase transition that
was observed after suppressing the single 1/2 defects. In
Figs. 11 and 12 we have depicted the order parameterkq2l
and specific heatCV plots, respectively, as functions of tem-

perature for different lattice sizes after the single-1/2-charge
suppression in theP4 model. We have used the standard data
collapse technique to collapse the data of Figs. 11 and 12 and
the resulting diagrams are Figs. 13 and 14, respectively. In
Fig. 13 we have shown the collapse of the order parameter
scaling function forL=20, 40, 60, and 80, while in Fig. 14
the collapse of the specific heat scaling function for the sys-
tem sizes 40, 60, and 80 are displayed. The data collapse
clearly shows that the phase transition that theP4 model
exhibits after the single-1/2-charge suppression is second or-
der. The parameters we have obtained areTc=0.498,b
=0.16, andn=0.99 for the collapse of the order parameter
andTc=0.4938,a=0.077, andn=0.94 from the collapse of
the specific heat. We would remark that the high-temperature
behavior of the order parameterkq2l after total charge sup-
pression does not indicate the presence of a phase transition.
This is true for both models.

We have used large values ofl in our simulation in order
to suppress the evolution of defects in both models. It is
known that any Monte Carlo study is faithful only if we can
reach any point in the phase space starting from any other
point. So there must be a path connecting the two points in
phase space with nonzero probability. This actually indicates

TABLE I. The parameters obtained in theL=80, P4 model for the best fitgsrd=ar−p+b of the correlation
function at the temperatures indicated. In the normal lattice at these temperaturesgsrd decays exponentially
to zero.

T Charges suppressed p b

0.48 Single 1/2 suppressed on square plaquettes 0. 688 0. 275

0.48 Total 0. 432 0. 385

0.50 Single 1/2 suppressed on square plaquettes 0. 615 0. 062

0.50 Total 0. 474 0. 353

0.68 Single 1/2 suppressed on square plaquettes 1. 410 0

0.68 Total 0. 650 0

FIG. 8. The correlation functiongsrd plotted againstr for the
L=40 P2 lattice at T=0.6 for both the unrestricted case and the
suppressed case. FIG. 9. The correlation functiongsrd plotted againstr for the

L=80 P4 lattice. For the curvesa, b, c, T=0.68; for the curves
d, e, f , T=0.5, and for the curvesg, h, i , T=0.48. The three
curves in each set correspond to the normal MC, 1/2 charge sup-
pressed, and total charge suppressed cases. The parameters used to
fit these curves are listed in Table I.
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that we should be careful that we are not trapped in any small
region of the phase space. We have investigated the phase
space connectivity in both the models by observing the evo-
lution of the order parameter or energy with MC steps. The
connectedness is satisfied if the observed quantities for dif-
ferent initial states converge to the same final value. In Fig.
15 we have shown that in case of the 80380 P2 model, after
suppressing the 1/2 defects(by usingl=60) on the square
plaquettes, the final values of the order parameter is same for
three different initial configurations. Similarly in Fig. 16 we
have shown that the same thing happens for the total energy
of the 80380 P4 model after suppressing the 1/2 defects on
the square plaquettes. It is therefore clear that we can use a
value ofl at least up to 60 without violating the phase space
connectivity.

VI. CONCLUSION

It is established in this paper that topological defects play
a very important role in the phase transitions exhibited by the
two planar lattice models we discussed. The observed differ-

ence in the critical behavior seems to be due to the difference
in the role played by the topological defects. It is shown in
this paper that for the phase transition in both models topo-
logical defects are necessary. In theP2 model the phase tran-
sition is governed by the 1/2 disclination points enclosed by
the square plaquettes only(single 1/2). On suppressing these
single 1/2 defects we have shown that the phase transition
was totally eliminated. However, the picture is different in
the case of the two-dimensionalP4 model, where on sup-
pressing the single 1/2 defects the nature and the transition
temperature of the phase transition are changed. We have
also shown that the phase transition in theP4 model is due to
the presence of a large number of 1/2 pairs(enclosed by two
triangular portions) within the square plaquettes which re-
mains unsuppressed even after suppressing the single 1/2
defects. This leads to another important conclusion that, for
tracing out all the disclination points in two dimensions, the
minimum closed loops in physical space to be considered are
the smallest triangular cells formed by three nearest neighbor
sites.

FIG. 10. Free energy vs energy forP4 model forL=40 (upper)
andL=60 (lower) sizes after suppressing the single 1/2 defects on
the square plaquettes.

FIG. 11. The order parameterkq2l plotted against temperatureT
for three lattice sizes indicated for theP4 model after suppressing
single 1/2 defects.

FIG. 12. The specific heatCV vs T for the lattice sizes indicated
for theP4 model after the single 1/2 charge suppression. The values
of CV here obtained fromdkEl /dT and the histogram reweighting
technique[22] was used.

FIG. 13. Collapse of the order parameter forL=20, 40, 60, and
80 sizes. The best collapse is obtained atTcs`d=0.498(thermody-
namic limit), n=0.99(exponent for correlation length), b=0.16(ex-
ponent for order parameter). t is the reduced temperaturesT
−Tcd /Tc.
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It will be interesting to apply the idea of triangular
plaquettes in three-dimensional nematics, where the stable
topological defects are disclination lines as well as mono-
poles. Let us consider a small disclination loop in a three-
dimensional nematic(Fig. 17). In the figure a cubic unit cell
ABCDEFGHis shown. The disclination loop has crossed the
face ABCD twice. However, if we take mapping ofABCD
on the order parameter space then we would get a contract-
ible loop in the order parameter space and conclude that
ABCDdoes not enclose any line defect. It is true thatABCD
does not enclose a single line, but it encloses two close lines
(as the loop intersects the faceABCD twice), which could be
detected only if we consider the two triangular portions
(ABC and ADC) of ABCD. So considering the elementary
plaquettes to be square plaquettes of linear dimension equal
to the lattice spacing, we would miss loops as shown in the
figure. In real nematics small loops are known to carry
monopole(hedgehog) charges. An actual monopole structure
is very rare in real nematics. As already stated, the low prob-
ability of the actual monopole structure is discussed by Hind-
marsh[17]. The monopoles that come into play in the three-
dimensional nematics arise mainly from the small
disclination rings. In our work it is evident that in theP4
model it is very important to consider these triangular
plaquettes in order to trace out the topological defects prop-
erly. If the same work is carried out on the three-dimensional
P4 model and disclination lines are traced out using triangu-
lar plaquettes, then one is likely to get a large number of
rings as shown in Fig. 17. The small disclination rings which
behave like monopoles, is expected to have an important role
in the phase transition of the three dimensionalP4 model.
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FIG. 14. The collapse of the specific heat data for system sizes
L=40, 60, and 80. The best collapse obtained at the thermodynamic
limit of the transition temperaturefTcs`d=0.4938g , n=0.94, and
a sexponent for the specific heatd=0.077.

FIG. 15. Evolution of order parameter for 80380 P2 model
after suppressing the 1/2 defects enclosed by the square plaquettes
usingl=60. The final values of the order parameter for three initial
states withq0

2=1.0, 0.19, and 0.09 are almost the same.

FIG. 16. Evolution of total energy of the 80380 P4 model after
suppressing the 1/2 defects enclosed by the square plaquettes using
l=60. The final values of energy for two different initial states are
almost the same.

FIG. 17. The cubic unit cellABCDEFGH in a three-
dimensional nematic. The disclination ring cuts the upper face
ABCD at X and X1. The triangular portionsABC and ADC must
enclose a 1/2 defect each.
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