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Phase transitions in two planar lattice models and topological defects: A Monte Carlo study
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Monte Carlo simulation has been performed in the plahsand P, models to investigate the effects of the
suppression of topological defects on the phase transition exhibited by these models. Suppression of the 1/2
defects on the square plaquettes inB3anodel leads to complete elimination of the phase transition observed
in this model. However, in thé&, model, on suppressing the single 1/2 defects on square plaquettes, the
otherwise first order phase transition changes to a second order one which occurs at a higher temperature, and
this is due to the presence of a large humber of 1/2 pair defects which are left within the square plaquettes.
When we suppressed these charges too, complete elimination of the phase transition was observed.
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I. INTRODUCTION Monte Carlo(MC) methods by a number of authdig-9]. In
the rest of this paper we shall refer to these as the plBpar
It is well known that conventional long range order can-andP, models, respectively. Both models possess in addition
not exist in a two-dimensional continuous spin systedf  to the usualO(3) symmetry, aZ, symmetry as well and this
However, the existence of topological charges leads to &ads to the identification of the antipodal points in the order
quasi long range ordéQLRO) to disorder phase transition. parameter spac®. The planaP, model is known to exhibit
The most notable and thoroughly investigated example is thg continuous phase transition at a dimensionless temperature
two-dimensionalXY model [O(2) model in which, using a  whose thermodynamic limit is 0.548] and theP, model is
renormalization group technique, Kosterlitz and Thou[@$s  characterized by a strongly first order transition at tempera-
predicted a QLRO-disorder phase transition which is associture 0.376[9]. In the low temperature ordered phase in both
ated with the unbinding of the vortex-antivortex paiftspo-  models the pair correlation function shows an algebraic de-
logical charges of strength ¥Ivhich are stable topological cay to a plateau which changes over to an exponential decay
defects in this system. The phase with QLRO is characterin the neighborhood of the phase transit{@:9].
ized by an algebraic decay of the spin-spin correlation func- The role of defects in the phase transition of various
tion which is a slower decay than the fast exponential onehree-dimensional spin systems is very difficult to study
which is observed in a completely disordered system. On theheoretically due to the nonlinearity introduced in the three-
other hand, in the two-dimensional nonlinear sigma modeldimensional3D) nature of the spins. However, a simulation
an example of which is the plan&(3) model, there exists technique may be used to investigate the role of topological
no stable topological defect and the system remains disodefects in these systems. Lau and Dasg{ip@hhave shown
dered at all finite temperatuf8]. numerically using the conventionalETROPOLIS algorithm
Another class of the two-dimensional systems of interesthat monopoleshedgehogsare necessary for the phase tran-
is the planar Lebwohl-LashétL) [4] model and a modified sition in the three-dimensional Heisenberg model. These au-
version of it to be elaborated below. In the three-dimensionathors observed that if one suppresses the formation of these
version of the LL model, the spin@f dimensionality 3, defects in the 3D Heisenberg model, the system remains or-
located at the sites of a simple cubic lattice, interact withdered at all temperatures and the transition to the disordered
nearest neighbors via a potentiaPstcosé) where 6 is the  phase disappears altogether. The present work, which in-
angle between the spins aRd is the second Legendre poly- volves an elaborate MC study, was undertaken to investigate
nomial. This model successfully describes the orientationathe effect of the suppression of the topological defects on the
aspects of a nematic and undergoes a weakly first ordgrhase transitions which the plary and P, models exhibit.
phase transition, representative of the nematic-isotrgpix =~ The work was motivated to a large extent by the work of Lau
transition, seen in a real nematic. A number of investigatorand Dasguptfl0] in the 3D Heisenberg model. Other work,
[5,6] have used a modified version of the LL model by add-along the same line, which must be mentioned in this con-
ing a P, term to the usual P, one, P, being the fourth text, is that of Lammeret al. [11] who, in a MC study, have
order Legendre polynomial. The introduction of tRgterm  shown that the nature of the nematic-isotropic transition in a
reduces the sharpness of the peak of Bhderm in the po- 3D nematic changes when one suppresses the formation of
tential até==/2 and may lead to the appearance of a localthe stable line defects, called the disclination lines. Our work
minimum, depending on the relative strengths of fieand  shows that the topological defects play a very crucial role in
P, terms in the potential. This is found to enhance the firsthe phase transition in the planBs and P, models and al-

order degree of the NI transition. though these models possess the same symmetry they have
The two-dimensional version of the LL model and aremarkably different critical behavior.
modified version of it with a purd®, interaction between In the next section we briefly discuss the nature of the

nearest neighbor spins have recently been investigated usitgpological defects in the pland, and P, models and the
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algorithms for their identification are presented in the follow-
ing one. The details of our MC simulation are then presented
followed by the results and discussion.

1. Topological defects in the planar models

In the two-dimensional Heisenberg model there exist no
stable topological defects. So the first or fundamental homo-
topy group is just the set containing the identity. However, in B c
the present planar mode{®, and P,) due to the localz,
symmetry in addition to th®©(3) symmetry there arise stable

topological point defects known as 1/2 disclination points, ki 1. The triangular plaquettdBC in physical spaceleft)
where the director rotates through an angle of 180° aroundnq the order parameter spacight). On % (N, S) is assigned for
the defect core. The order parameter space is just the unit (p pl) for B, and(R,RY) for C. The great circlexy is perpen-
sphereS” with antipodal points identified. Any mapping of gicular to NS and X1y; is perpendicular tdPPL. If the pointR is

the other half integral point defects on the order parametegutside the region enclosed by two great circles then the corre-
space is homotopically equivalent to the mapping of the 1/Zponding loop is contractible, otherwigeBC will enclose a 1/2
defect. Point defects of integral strength are not stable imlisclination point(see Ref[14]).

these models because of the so called escape to the third

dimension. Any attempt to escape from a configuration CONgzntipodal pair points on the unit sphet@) for each site of

taining a 1/2 point defect leads to a more singular Semi‘the trianqular plaguette. Let points correspondincAtoB
infinite line defect extending from the defect core. So theandc beg(N S)p (qP =) .and(g RY) (Fig. 1)? Let u%b\tsta,rt

fundamental or first homotopy group of the concerned mod
els is just the two-element growfy [12],

from the north poleN. The pointP or P! is selected depend-
ing on which is closer tiN. Let P be the selected point. So
m=1{0,1}. the arcNP of the great circle on the order parameter space is
traversed when we go from sifeto B on the physical space.
It is known that topological instability does not necessar-select fromR or R! whichever is closer t®. If the selected
ily imply physical instability[12]. If the path connecting the point is closer toS then the mapping oABC is a noncon-
singular to nonsingular configurations of the free energy intractible loop and the plaquette will enclose a 1/2 disclina-
volves a configuration of higher free energy than either, thegjgn point defect. However, if the selected point ris
one may say that the topologically unstable singularity may|oser toN, then the mapping is contractible to a point on the
possess a considerable degree of physical metastability. Thiphere and no defect will be enclosed by the triangular
seems to happen in the, model and may be briefly ex- ‘E/)Iaquette. It may be noted that¥, S, andS; are the spin

plained as follows. Consider a configuration where each o{;ariables associated with the poims B, and C then the
the four spins at the lattice sites which form a unit square argjangular plaquette will enclose a 1/2 defect if

in a plane and oriented at right angle to their neighbors. The

-P4(cos#) potential, in addition to having the global mini- sgri(S,S)(S§,S)(S.9)]=-1. (1)
mum at 6=0 (or #=m), also has a local minimum af
=/2. If the orientation of the spins are now gradually di
changed in order to makeé— 0 (so as to reach the ground b
statg a potential barrier will have to be overcome and the

Priezev and Pelcovitg6] in their work on three-
mensional nematics have defined defect counting operators
ased on this principle. In addition to these two mathemati-
. cally equivalent methods, an algorithm for detecting 1/2 de-
process begomes ene'rgetlcally cpstly: Thus there may eXiglcts inRP2 models can be developed using the method first
metastable integral point defects in this mofiiE3]. proposed by Berg and Luschit6]. The method works as

The algorithm for the detection of these defects is, hOW'follows. The projection matriXP associated with each unit

ever, nontrivial as it is not really possible to enclose a 1Spin vectorS in an RP? model obeys the relatioR?=P and

defect by four spins alone. The possible method of detectimcr{P=1 and its elements may be definedryg =S,S; where

of these defet():lts tis gistcu?sed in th:gefxt fiﬁion' Wefi?]d tlhg,ﬂzl,z,:a. The charge at a lattice six¢ enclosed by an
we were unaple o detect any such detect because of the O&fementary triangular plaquette which has the projection ma-

probability of their formation. tricesP,, Py, and P5 associated with its corners is given by

IIl. The Defect finding algorithms _ i -1 Tr{P3P,P4}
Oy = cos 13- (2)
2’77 {TI’PlF’ZTI‘PZP3TI‘P3P1}

In order to detect the 1/2 point defects we have followed
the algorithm originally proposed by Vachaspgt4] and We have used and checked that all the three above men-
subsequently used by othels5]. In order to trace out the tioned algorithms for the detection of the 1/2 defects in tri-
topological defects it will be useful to see when a closed loopangular plaquettes are exactly equivalent in all cases in both
in the physical space will enclose a 1/2 disclination point.models.

Let us consider a triangular plague#C in the physical The detection of the metastable 1 defects inRhenodel
space. Due to local inversion symmetry we have to assigis a nontrivial job and the probability of their formation is

066125-2



PHASE TRANSITIONS IN TWO PLANAR LATTICE... PHYSICAL REVIEW E 70, 066125(2004)

very low as this requires a very “special arrangement of theoint defect is a triangle. Each elementary square plaquette
order parameter over many uncorrelated domajig]. In  can be diagonally cut into two triangles and if these two
3D nematics, where in principle both line and point defectsadjacent triangles each enclose a 1/2 defect then this leads to
(hedgehogsmay form, no point defects are observed in ex-a 1/2 pair charge being enclosed by the elementary square. If
periments on quenched nematids8] until the defect net- only one of those triangles _encloses a 1/2 charge then the
work has coarsened appreciably. It has been observed thdfiluare in turn encloses a single 1/2 charge. We denote the
monopoles were formed only by string interactions and non&umber of square plaquettes enclosing a pair of 1/2 charges
were generated during the quench. Using the topology, ofY M1 (this should, however, not be confused with a topologi-
more specifically the homology, of the order parameter spac&?® defect of charge)l Similarly, the number of elementary
[17], Hindmarsh has explained why the expected density ofduares enclosing a single 1/2 charge is denoteu pyin a
point defects is extremely low. The observation, brieﬂyrecent work, Mondal and Rofl3] have observed that the

S . B : S ratio ny;,/n; behaves like a response function in both the
speaking, is that in order.to cov space tW'CE(Wh'Ch.'S models although its behavior is different in the two systems.
necessary for a topological 1 chaygea roughly spherical

When plotted against temperature, the ratjg/n, exhibits a

arrangement of a minimum of 12 uncorrelated adjacent doz -..im at the transition in the, model while in theP,

mains is necessary and this has a probabi#ty0™®. In a  oqel it shows a sharp fall at the transition. Finite size ef-
two-dimensional nematic the same considerations are Dgacts are also prominent in the transition temperatures thus
lieved to apply for the +1 point defecfd9]. We have used gptained from then,,/n, vs T plots.
the algorithm using the 12-spin configuration proposed by |n our MC simulation, while investigating the effect of
Zapotackyet al. [15] to detect the 1 charge but could find suppression for the charges in the two planar models, we
none. have treated the single 1/2 charge and the 1/2 [gaiithin
an elementary square plaquette different footings. For the
IV. The Simulation Details simulation where no charge suppression has been attempted
~we have seh=0. For the suppression of the charges repre-
In the present paper we have used the convention@ented byn,,, \ # 0 only for Q;,=1/2 while for total (both
METROPOLIS spin update algorithn{20,2] with periodic  single-1/2 and 1/2-pair suppressjpi # 0 for Q; #0. In
boundary conditions in order to study the role of the topo-the P, model, complete suppression of single 1/2 defects
logical defects in the phase transitions exhibited by the plawas found to lead to complete suppression of the 1/2 pair
nar P, and P, models. Lattice sizes ranging from 20 to  defects and this leads to complete elimination of the phase
80x 80 were used and a part of the work was performedransition in this model. In th€, model, however, the sup-
using the histogram reweighting technique of Ferrenberg andression of the single 1/2 defects leaves a large number of
Swendserj22]. 1/2 pair defects within the elementary squares and evidence
In order to carry out the procedure of the suppression 0bf an additional phase transition at a higher temperature is
the defects in the planar lattice models we have included abtained. When these defects too are suppressed, the phase
chemical potential term associated with the topologicalransition totally disappears.
charges[10]. The Hamiltonian used in the simulation is  In order to estimate the critical exponents and the thermo-
given by dynamic limit of the critical temperature of the transition that
we obtained in thé®?, model and which seems to be of sec-
H=-2> P (cosé)) +\> Qi (3)  ond order, we have applied the finite size scaling method.
i ijkd The finite size scaling method is a technique of estimating
whereL is either 2 or 4.; is the angle between the nearestthe critical exponents and the thermodynamic limit of the
neighbor spins,j and Qyy is the sum of charges of two transition temperature by observing how the measured quan-
triangular portions of a square plaguette. A positivmakes tities vary with the system size. In the finite size scaling
the formation of the charges expensive in terms of energynethod(the data collapse method in particylave extract
and for almost total suppression of the charge a large valué€ part of the thermodynamic function which does not con-
of X (about 10 to 60, but independent of temperatwas  tain the system size explicitlj21]. This part is called the
normally chosen. In order to obtain an unrestricted simulascaling function. If proper values of the critical exponents

tion we set\=0. The charge enclosed hjk for instance is and the thermodynamic limit for the transition temperature
given by are chosen then the scaling function for different system

. sizes collapses. In this paper we have used the data collapse
Qijk = 3[1 — sgA(S, S)(S,SI (S - (4)  technique for estimating the critical exponents associated
. with the specific heat and the order parameter. The critical
Clearly the sunty;, can be 0, 1/2, or 1. Iy is 0 then the xponents associated with the correlation length, specific
square plaquette encloses no charge. If it is 1/2 then a 1/

disclination poi_nt is enclosed. Bu_t ifitis 1, then it sh(_)uld not r::;éc?icgly?rder parameter are denoted by, and 4,
be confused with an mtegral_ point defect. In fa(;t this COITe~ " Eor the specific heat, the scaling relation stands as
sponds to two closest possible 1/2 charges situated within
a square plaquette of linear dimension equal to the lattice CV:L“’VE(Ll’Vt) (5)
spacing. -

In both the planar models we have investigated, the smallwheret is the reduced temperature a@ds the specific heat
est part of the system in real space that can enclose a 1/&aling function.
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FIG. 3. The order parametég® obtained for theL =40 lattice
. Lo in the P, model with no charge suppression. The temperature de-
corresponds tcC,, obtained from energy fluctuation in tHe=40 rivative has a peak aE=0.567. The inset shows the?) vs T plot

lattice and the continuous curve is taken from R8f.where it has ! .
been obtained using multiple histogram reweighting and the peak igfter suppressing the single 1/2 defects on the square plaquettes.

at T=0.587. Both correspond to normal MC simulation with no \while the temperature derivative ¢62) has a peak at the
charge suppression. The representsCy for L=40 lattice after  yansition temperature in the normal caséere no defect is
suppressing the single 1/2 defects on the square plaquettes. suppressexl which presumably is a signal of a phase transi-
tion in a finite systenj23], in the defect-free case it seems to
Similarly for the order parametdg® [see Eq.7)], the lose the characteristic shape and shows a smooth and rather

FIG. 2. The specific heat vs temperature plot in Eaanodel. +

scaling relation is given by slow decrease with temperature and vanishes at around a
~ temperatureT=6. We would be inclined to conclude from
(%) = L"#Q(LY) (6) the results orC, and(g? that the defect-free phase exhibits

~ no phase transition at all.
where Q is known as the order parameter scaling func-  Tyrming to the P, model, which has a characteristic
tion [11]. strongly first order phase transiti§], we first point out that

the suppression of the single 1/2 defects on the square
V. RESULTS AND DISCUSSION plaquettes here does not result in suppression (_)f th_e 1./2 pair
defects on the square plaquettes. This observation is different

We have evaluated various thermodynamic properties likérom what happens in thB, system where the suppression
the internal energy per particl), specific heat, order pa- of the single 1/2 defects on the square plaquettes leads to
rameter, etc. The specific heat was evaluated by taking theuppression of the 1/2 pair defects. On suppressing the
temperature derivative gE) as well as from fluctuation of single 1/2 defects a different phase transition is observed.

the energy. Due to the local inversion symmetry, the ordefVe point out, however, that it is impossible to make the

parameter is a second rank tensor. system completely free of topological defects, even when
As a measure of the order prevailing in the system wearbitrarily large values ok are used. However, the residual
used the quantityg?) given in Ref.[11]: charges left were of very insignificant amount. For instance,
at T=0.55, the traces of the single 1/2 and 1/2 pair charges
( 2>—L<§Tr 2_1> ) that could not be suppressed were about 0.02% of these
q7= N-1\2 Q N charges present in the system at the same temperature after

o ) single 1/2 charge suppression. Figure 4 shows the tempera-
whereQap=(1/N)ZQ(i)a is the nematic tensor order param- e dependence of the specific heat for the normal lattice
eter, Q(i)ap=Nany =385 (7 is the molecular axis of thith  (L=40) and after suppression of the single 1/2 defefus
moleculg, andN is the total number of sitel$) in the lattice. | =40 and 60. The peak inCy for the latter case, while is
This definition ensures that?) is zero in a fully disordered greatly reduced in sizéfrom 80 to about 1Y shifts to a
system and 1 for a fully ordered system. higher temperature which for both lattices is close to 0.494.

In the case of thé, model we have simulated for linear Presumably the phase transition that we observed after sup-
dimensionL=40 and 60. In Fig. 2 we have depicted the pressing the single 1/2 defects is due to the presence of the
specific heat versus temperature plot for Bydattice model  1/2 pair defects. When we suppressed the 1/2 pair defects
of size 40<40. The unrestricted simulation shows a peaktoo in all triangular plaquettes of the lattice no evidence of
that disappears when the single 1/2 charges on the squaa@y peak inCy, was observed, although a humplike feature
plaquettes are suppressed. We have observed that the aftess seen withC,,~ 3.5 over a temperature range extending
suppression of the single 1/2 charges on the squarffom 0.53 to 0.62. In the case of tliy, model we have also
plaguettes there remains no 1/2 pair defect in any squar@vestigated the response of the defect density to the phase
plaguette. The temperature dependence of the order parammansition. When no kind of charge suppression was applied a
eter used in this model for the two cases is shown in Fig 3large number of single 1/2 defects as well as 1/2 pair de-
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FIG. 4. Cy plotted againsfT for unrestricted simulation of FIG. 6. The densityn;) of 1/2 pair charges for the unrestricted

=40, P, lattice (left) and the same fot.=40 and 60 lattices ob- case of the&.=40 P, model(left) and the same after suppressing the
tained after suppressing the single 1/2 defects on the squarmgngle 1/2 defectgright). The temperature derivative of the former
plaquetteqright). The slightly bigger peak is for the=60 lattice.  has a peak at=0.379 and the latteiinse) peaks afl=0.494.

The peak occurs at=0.494.

temperature range cannot be a sign of a phase transition.

fects were found to be present. In Fig. 5 the temperatur@hese, in some way, may be connected to the existence of
dependence of the density of single 1/2 defects is shown fathe small number of residual charges left in the system after
unrestricted simulation. In Fig. 6 the temperature dependendée attempt to suppress them completely failed.
of the density 1/2 pair defects is shown both before and after We now turn to the pair correlation functiog(r)
suppression of the single 1/2 defects. Clearly the tempera:(cos?eij—l/s) wherer is the separation between the two
ture derivative of the defect density behaves like other respinsj andj which make an angle; with each other. This
sponse functions for all cases. function for theP, model atT=0.6, for instance, which is a

In Fig. 7, we have depicted the temperature dependeng@mperature much higher than the normal critical tempera-
of the order parametéq?) for all three cases in the, model  ture in this model, decays exponentially to zero, as it should,
for L=40. The peaks of the temperature derivative(@®  in the complete absence of long range order, and a best fit
occur, respectively, at 0.37@ormal MC simulatioh and  with g(r)=a exp(—\r) yields «=0.439 anc\ =0.248. For the
0.490(after suppressing single 1/2 defgasd their heights  single 1/2 chargéand consequently 1/2 pair charyeasip-
are 119.5 and 18.5, respectively. On suppressing all the 1/gressed case, it decays algebraically and a best fitglike
charges on all triangular plaquettes of the latticgal charge  =arP+b yields the parametera=0.404,b=0.022, andp
suppressiop) d(g?/dT no longer exhibits a peak an@?  =0.372(Fig. 8). In Fig. 9, theg(r) vsr plots for theP, model
seems to have an asymptotic value of 0.1Tat2, up to  are shown foilf=0.48(which is greater than the normal tran-
which the investigation has been made. We add thasition temperature but less than the transition temperature
d(g?)/dT after total charge suppression has a feature similapbtained after 1/2-charge suppressjoi=0.5 (which is
to that seen irCy, in that a broad peak of height4 was seen

over a temperature range from 0.52 to 0.6. The existence of 0.9 "
this broad hump of insignificant magnitude over an extended 08l Ty
., x 09
X
07t * %

0.35 . . . . . R s

LT 06} + ><xx<q >
03} ¥ ] * x

o , 05 Ry %
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s+ 7
%-- + * , . . \ FIG. 7. The temperature dependence(qf) for the L=40P,
3 032 034 °'§6 038 04 042 model. On the left is the unrestricted MC result and on the right is

the case when the single 1/2 charges on the square plaguette were
FIG. 5. The density of the single 1/2 defects enclosed by thesuppressed. The inset shoyeg) when all charges are suppressed.
square plaquettes in the case of the40 P, model with no charge The temperature derivatives of the first two curves have peaks at
suppression. 0.379 and 0.490, respectively.
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FIG. 8. The correlation functiog(r) plotted against for the 0 5 10 15 20 25 30 35 40
L=40P, lattice at T=0.6 for both the unrestricted case and the r

suppressed case. FIG. 9. The correlation functiog(r) plotted against for the
L=80P, lattice. For the curves, b, c, T=0.68; for the curves
slightly higher than the observed transition temperature afted, e, f, T=0.5, and for the curveg, h, i, T=0.48. The three
1/2-charge suppressipnand T=0.68. At all of these tem- curves in each set correspond to the normal MC, 1/2 charge sup-
peratures, as one would expect, the correlation function ifpressed, and total charge suppressed cases. The parameters used to
the normal case decays exponentially to zero. The two othdit these curves are listed in Table I.
cases give best fits for an algebraic decay to a plateau, and
the parameters are listed in Table I. We find that in fhe perature for different lattice sizes after the single-1/2-charge
model the result of single-1/2-charge suppression is thsuppression in th®, model. We have used the standard data
same as that in thB, model, while with the suppression of collapse technique to collapse the data of Figs. 11 and 12 and
the 1/2 pair charges too, the asymptotic value of the ordethe resulting diagrams are Figs. 13 and 14, respectively. In
prevailing in the system increases further. The phase transkig. 13 we have shown the collapse of the order parameter
tion that theP, system has after suppressing the single 1/2caling function forL=20, 40, 60, and 80, while in Fig. 14
charges is second order. We have evidence that it is not fir¢he collapse of the specific heat scaling function for the sys-
order as the dual peak structure of the probability distributiortem sizes 40, 60, and 80 are displayed. The data collapse
as a function of energy, which is so distinct in tRgmodel clearly shows that the phase transition that e model
[9], has been found to disappear totally after suppressing thexhibits after the single-1/2-charge suppression is second or-
single 1/2 charges on the square plaquettes. In Fig. 10 waer. The parameters we have obtained are0.498,8
have given the the free energy of 4@0 and 60< 60 lattice  =0.16, andv=0.99 for the collapse of the order parameter
in the P, model after suppressing the single 1/2 defects orand T,=0.4938,a¢=0.077, andv=0.94 from the collapse of
the square plaquettes. The single well structure of the frethe specific heat. We would remark that the high-temperature
energy indicates the second order quality of the phase trafehavior of the order parametéy®) after total charge sup-
sition after suppressing the single 1/2 defects. pression does not indicate the presence of a phase transition.
We have also used standard finite size scaling methotthis is true for both models.
available for the second order phase transifiaij in order We have used large values »fin our simulation in order
to estimate the critical exponents and the thermodynamie suppress the evolution of defects in both models. It is
limit of the transition temperature of the phase transition thaknown that any Monte Carlo study is faithful only if we can
was observed after suppressing the single 1/2 defects. each any point in the phase space starting from any other
Figs. 11 and 12 we have depicted the order paramef¢r point. So there must be a path connecting the two points in
and specific healy plots, respectively, as functions of tem- phase space with nonzero probability. This actually indicates

TABLE I. The parameters obtained in the=80, P, model for the best fig(r)=ar P+b of the correlation
function at the temperatures indicated. In the normal lattice at these tempegiyrdecays exponentially

to zero.
T Charges suppressed p b

0.48 Single 1/2 suppressed on square plaquettes 0. 688 0. 275
0.48 Total 0. 432 0. 385
0.50 Single 1/2 suppressed on square plaquettes 0. 615 0. 062
0.50 Total 0. 474 0. 353
0.68 Single 1/2 suppressed on square plaquettes 1. 410 0
0.68 Total 0. 650 0
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FIG. 10. Free energy vs energy fBy model forL=40 (uppej) ¢ 't:r:Gl'Dlz' Lh? sf?ecmc h_eﬂl\, vls/'lz' fohr the lattice SIz€s |n_(rjr|]catetlj
andL =60 (lower) sizes after suppressing the single 1/2 defects onofrc eh amo bf a ?jrf emszrIIEg/%T ((:j ?hrgeh.sutppressmn. . eht\.la ues
the square plaquettes. of Cy here obtained fro ) and the histogram reweighting

technique[22] was used.

that we should be careful that we are not trapped in any smalince in the critical behavior seems to be due to the difference
region of the phase space. We have investigated the phaggthe role played by the topological defects. It is shown in
space connectivity in both the models by observing the evothis paper that for the phase transition in both models topo-
lution of the order parameter or energy with MC steps. Theggical defects are necessary. In fiemodel the phase tran-
connectedness is satisfied if the observed quantities for dikijtion is governed by the 1/2 disclination points enclosed by
fel’ent |n|t|a| States Converge to the same ﬁnal Value. In F|gthe Square p|aquettes Or@ng'e 1/3 On Suppressing these
15 we have shown that in case of theX880 P, model, after  single 1/2 defects we have shown that the phase transition
suppressing the 1/2 defeatsy using\=60) on the square \yas totally eliminated. However, the picture is different in
plaguettes, the final values of the order parameter is same f@he case of the two-dimension®, model, where on sup-
three different initial configurations. Similarly in Fig. 16 we pressing the single 1/2 defects the nature and the transition
have shown that the same thing happens for the total energgmperature of the phase transition are changed. We have
of the 80x 80 P, model after suppressing the 1/2 defects ong|so shown that the phase transition in Byemodel is due to
the square plaquettes. It is therefore clear that we can useige presence of a large number of 1/2 pansclosed by two
value of\ at least up to 60 without violating the phase spac&riangular portions within the square plaguettes which re-
connectivity. mains unsuppressed even after suppressing the single 1/2
defects. This leads to another important conclusion that, for
VI. CONCLUSION tracing out all the disclination points in two dimensions, the

minimum closed loops in physical space to be considered are

Itis established in this paper that topological defects play,e smajlest triangular cells formed by three nearest neighbor
a very important role in the phase transitions exhibited by thgjiag

two planar lattice models we discussed. The observed differ-
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B o 0.485 049 0435 05 0.505 FIG. 13. Collapse of the order parameter for20, 40, 60, and

80 sizes. The best collapse is obtained dtc) =0.498(thermody-

FIG. 11. The order parameté&y?) plotted against temperatufe  namic limit), v=0.99(exponent for correlation length3=0.16(ex-

for three lattice sizes indicated for th, model after suppressing ponent for order paramedert is the reduced temperaturer
single 1/2 defects. =TI/ Te.
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FIG. 17. The cubic unit cell ABCDEFGH in a three-
dimensional nematic. The disclination ring cuts the upper face

FIG. 14. The collapse of the specific heat data for system sizeABCD at X and X;. The triangular portion®BC and ADC must
L=40, 60, and 80. The best collapse obtained at the thermodynamighclose a 1/2 defect each.

limit of the transition temperaturgT («c)=0.4939, »=0.94, and
a (exponent for the specific heat0.077.
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FIG. 15. Evolution of order parameter for 880 P, model

It will be interesting to apply the idea of triangular
plaquettes in three-dimensional nematics, where the stable
topological defects are disclination lines as well as mono-
poles. Let us consider a small disclination loop in a three-
dimensional nemati¢Fig. 17). In the figure a cubic unit cell
ABCDEFGHis shown. The disclination loop has crossed the
face ABCD twice. However, if we take mapping &BCD
on the order parameter space then we would get a contract-
ible loop in the order parameter space and conclude that
ABCDdoes not enclose any line defect. It is true tA&CD
does not enclose a single line, but it encloses two close lines
(as the loop intersects the fad®CD twice), which could be
detected only if we consider the two triangular portions
(ABC and ADC) of ABCD. So considering the elementary
plaguettes to be square plaquettes of linear dimension equal
to the lattice spacing, we would miss loops as shown in the

after Suppressing the 1/2 defects enclosed by the square plaquet‘%ure_ In real nematics small |Oops are known to carry

states Withqul.o, 0.19, and 0.09 are almost the same.
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FIG. 16. Evolution of total energy of the 8080 P, model after

is very rare in real nematics. As already stated, the low prob-
ability of the actual monopole structure is discussed by Hind-
marsh[17]. The monopoles that come into play in the three-
dimensional nematics arise mainly from the small
disclination rings. In our work it is evident that in the,
model it is very important to consider these triangular
plaguettes in order to trace out the topological defects prop-
erly. If the same work is carried out on the three-dimensional
P, model and disclination lines are traced out using triangu-
lar plaquettes, then one is likely to get a large number of
rings as shown in Fig. 17. The small disclination rings which
behave like monopoles, is expected to have an important role
in the phase transition of the three dimensioRgimodel.

ACKNOWLEDGMENTS

The authors acknowledge a UGC Grant No. F.10-17/

2001 SR-1) which enabled us to upgrade the computing fa-

suppressing the 1/2 defects enclosed by the square plaquettes us@ility. One of us(S.D.) acknowledges financial support from
A=60. The final values of energy for two different initial states arethe Council of Scientific and Industrial Resear@@SIR),

almost the same.

India.

066125-8



PHASE TRANSITIONS IN TWO PLANAR LATTICE... PHYSICAL REVIEW E 70, 066125(2004)

[1] N. D. Mermin and H. Wagner, Phys. Rev. Lett7, 1133 may be noted that the mention of a topological 1 charge in-
(1966. cluded in the elementary square plaquettes in this Letter should
[2] J. M. Kosterlitz and D. J. Thouless, J. Phys5(C1.124(1972); be replaced by 1/2 pair charges enclosed by the two elemen-
5, 1180(1973. tary triangular plagquettes that form an elementary square
[3] A. A. Migdal, Zh. Eksp. Teor. Fiz.69, 810 (1975; A. M. [14] T. Vachaspati, Phys. Rev. B4, 3723(1991).
Polykov, Phys. Lett.59B, 79 (1975. [15] M. Zapotocky, P. M. Goldbart, and Nigel Goldenfeld, Phys.
[4] P. A. Lebwohl and G. Lasher, Phys. Rev.6) 426 (1972); 7, Rev. E 51, 1216(1995 (at the end of Sec. IV B the algorithm
2222(1973. for finding the 360° defects is given

[5] Z. Zhang, O. G. Mouritsen, and M. J. Zuckermann, Phys. Rev[16] B. Berg and M. Luscher, Nucl. Phys. B90, 412 (1981.
Lett. 69, 2803(1992; Z. Zhang, M. J. Zuckermann, and O. G. [17] M. Hindmarsh, Phys. Rev. Let{Z5, 2502(1995.

Mouritsen, Mol. Phys.80, 1195(1993. [18] I. Chuang, R. Durrer, N. Turok, and B. Yurke, Scien28l,
[6] N. V. Priezjev and R. A. Pelcovits, Phys. Rev.@, 031710 1336 (199D; I. Chuang, B. Yurke, A. N. Pargellis, and N.
(2001). Turok, Phys. Rev. E47, 3343(1993.
[7] H. Kunz and G. Zumbach, Phys. Rev. 4, 662(1992. [19] M. Hindmarsh(Ref. [17]), Ref.[15] therein.
[8] E. Mondal and S. K. Roy, Phys. Lett. 812 397 (2003. [20] N. Metropoliset al, J. Chem. Phys21, 1087(1953.
[9] A. Pal and S. K. Roy, Phys. Rev. &7, 011705(2003. [21] M. E. J. Newman and G. T. Barkemidpnte Carlo Methods in
[10] M. Lau and C. Dasgupta, Phys. Rev.3®, 7212(1989. Statistical PhysicgClarendon, Oxford, 1999
[11] P. E. Lammert, D. S. Rokhsar, and J. Toner, Phys. ReS2E  [22] A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lé#.
1778(1999; Phys. Rev. Lett.70, 1650(1993. 1195(1989.
[12] N. D. Mermin, Rev. Mod. Phys51, 591(1979. [23] C. Chiccoli, P. Pasini, and C. Zannoni, Physical48 298
[13] E. Mondal and S. K. Roy, Phys. Lett. 824, 337 (2004). (It (1988; Lig. Cryst. 2, 39 (1987).

066125-9



